Page 33

Proceedings of International Conference on Climate Change, Biodiversity and Ecosystem Services for the Sustainable Development Goals : Policy and Practice 27-29 June 2016 at the Sirindhorn International Environmental Park, Cha-am, Phetchaburi, Thailand

(Department  of  Agriculture,  2015). The  natural  habitat  of Water  Onion  is  severely  fragmented  due  to  deforestation,  land  use  change  and  dredging.  Based  on  limited  survey,  Soothornnawaphat  (2010)  indicated  that  the  remaining  habitat  of Water  Onion  in  Thailand  covered  only  1.90  rai  or  less  than  1  ha.  It  is  most  likely  however  that  this  species  may  exist  in  remote  streams  in  Ranong,  Phang-Nga  and  nearby  provinces.  In  connection  to  this,  there  is  a  global  and  national  concern  about  over  exploitation  of Water  Onion  and  its  conservation  status.  The  objectives  of  this  research  were  to  investigate  the  current  extent  of  occurrence  and  to  assess  the  conservation  status  of Water  Onion  in  Thailand  using  species  distribution models  and  the  IUCN  Red  List  categories  and  criteria  version  3.1  II. METHOD 2.1  Study  area  and  sampling The  research  was  conducted  in  Ranong  and  Phang-Nga  Provinces  in  southern  Thailand. The  study  area  was  sub-divided  into  3  parts.  The  first  part  covers  three  districts  in  upper  Ranong,  namely  Kraburi,  Laoun  and  Mueng  Ranong.  The  second  part  is  located  in  four  districts  (Kraper,  Suksamran,  Kruraburi  and  Takaopha)  of  lower  Ranong  and  upper  Phang- Nga  provinces.  In  addition,  the  third  part  area  covers  6  districts  in  lower  Phang-Nga  province, including  Kapong,  Mueng,  Thaimeung,  Thabpud,  Takouthung  and  Kaoyoa.  Actual  ground  survey  was  carried  out  in  parts  1  and  3 because  these  areas  have  not  been  investigated. Occurrence  data  in  part  2  were  gathered  from  previous  studies  (Ranong  Provincial  Natural  Resources  and  Environment  office,  2012;  Soothornnawaphat,  2010;  Thailand  Institute  of  Scientific  and  Technological  Research,  2013).  Seventy-five  percentage  of  the  sample  point  data  was  used  to  generate  species  distribution  models,  while  the  remaining  25%  was  kept  as  independent  data  to  test  the  omission  errors.  Assuming  that  the  surveyed  localities  without  occurrence  data  for  each  species  have  a  higher  probability  of  being  considered  as  reliable  absences,  we  randomly  selected  a  similar  number  of  these  probable  absences  to  estimate  commission  errors. 2.2  Environmental  factors  for  species  distribution  Potential  environmental  factors  that  may  contribute  to  the  distributions  include  17  variables  from  4  datasets.  Physical  factors  include  elevation,  slope,  aspect,  soil  group  and  accumulated  flow.  Bio-physical  factors  consist of  land  use  and  normalized  difference  vegetation  index  (NDVI)  derived  from  Landsat-TM  data.  Six  annual  and  seasonal  bioclimatic  variables  important  in  species  distribution  include  annual mean  temperature,  maximum  temperature  of  warmest  month,  mean  temperature  of  driest  quarter,  annual  precipitation,  precipitation  of  wettest  quarter  and  precipitation  of  driest  quarter.  In  addition,  human  pressures  that  influences  its  distribution  include  distance  to  road,  distance  to  village  and  distance  to  dredging.  All  environmental  variables  were  geo-referenced  and  resampled  to  grid  cell  of  30  x  30 m  resolution  for  spatial  analyses.  2.3  Species  distribution  modeling Two  species  distribution  models  were  selected  to  map  the  predicted  extent  of Water  Onion.  1.  Logistic  regression  is  a  multivariate  statistical  technique  to  predict  a  binary  dependent  variable  (presence  or  absence)  before  entering  them  in  the  model  (Atkinson  and  Massari,  1988).  It  is  one  of  common  species  distribution modeling  techniques  (Trisurat  et.  al.,  2011).  In  this  research,  it  was  used  to  estimate  the  probability  of  the  occurrence  of Water  Onion  in  the  landscape.  The  logistic  regression model is  written  as: Prob  event = eZi 1+ezi Proceedings  of  the  International  Conference  on  Climate  Change,  Biodiversity  and  Ecosystem  Services  for  the 31 Sustainable  Development  Goals  (SDGs):  Policy  and  Practice  27-29  June  2016,  Cha-am,  Phetchaburi,  Thailand


Proceedings of International Conference on Climate Change, Biodiversity and Ecosystem Services for the Sustainable Development Goals : Policy and Practice 27-29 June 2016 at the Sirindhorn International Environmental Park, Cha-am, Phetchaburi, Thailand
To see the actual publication please follow the link above