Page 296

Proceedings of International Conference on Climate Change, Biodiversity and Ecosystem Services for the Sustainable Development Goals : Policy and Practice 27-29 June 2016 at the Sirindhorn International Environmental Park, Cha-am, Phetchaburi, Thailand

Fig.1  Location  map  of  the  study  areas  located  in  Myanmar’s  central  dry  zone Table  1  Detailed  information  for  meteorological  stations Station Name Station Name Station Code (WMO Standard) Station Code (WMO Standard) Latitude (DD) Latitude (DD) Longitude (DD) Elevation (m) Data Availability Mandalay 48042 21.98 96.10 78 1975-2015 Meikthila 48053 20.33 95.83 214 1975-2015 Minbu 48064 20.17 94.88 51 1975-2015 Monywa 48037 22.10 95.13 81 1975-2015 Pyinmana 48074 19.72 96.22 95 1975-2015 Mandalay 48042 21.98 96.10 78 1975-2015 Meikthila 48053 20.33 95.83 214 1975-2015 Minbu 48064 20.17 94.88 51 1975-2015 Monywa 48037 22.10 95.13 81 1975-2015 Pyinmana 48074 19.72 96.22 95 1975-2015 C.  Data  Quality  and  Homogeneity  Checks Data  quality  control  and  homogeneity  are  necessary  for  statistical  analysis  as  climatic  trends  are  very  sensitive  to  errant  values  and  outliers  from  numerous  sources  14,  15.  Prior  to  analysis  of  climate  data,  it  is  important  to  remove  the  data  errors  and  outliers  in  standard  methodological  manner  14.  In  this  study,  the  basic  quality  control  and  temporal  outliers  check  were  carried  out  for  all  data  sets  using  14,  15.  During  the  basic  quality  control  checking,  the  following  errors  such  as  missing  value,  negative  precipitation  value  (human  typing  e r r o r ) ,   daily  maximum  temperature  is  less  than  or  equal  to  daily  Longitude (DD) Elevation (m) Data Availability minimum  temperature,  and  daily  maximum  or  minimum  temperature  is  greater  than  70°C  were  detected  16.  All  errors  from  basic  quality  control  were  assigned  as  no  data.  The  temporal  outliers  check  for  a  specific  station  is  based  on  the  premise  that  an  individual  monthly  value  should  be  statistically  “similar”  to  the  values  of  the  same  month  from  the  other  years.  Outliers  were  identified  by  utilizing  the  sample  distribution  for  each  month  of  individual  station.  Extreme  values  are  flagged  out  based  on  limited  determination  from  a  multiple  of  the  interquartile  range  calculated  for  each  station  and  each  month  using  Eq  (1).  This  procedure  is  common  in  exploratory  data  analysis  procedures.  An  outlier  is  flagged  using  the  formula  15; 294 Proceedings  of  the  International  Conference  on  Climate  Change,  Biodiversity  and  Ecosystem  Services  for  the Sustainable  Development  Goals  (SDGs):  Policy  and  Practice  27-29  June  2016,  Cha-am,  Phetchaburi,  Thailand


Proceedings of International Conference on Climate Change, Biodiversity and Ecosystem Services for the Sustainable Development Goals : Policy and Practice 27-29 June 2016 at the Sirindhorn International Environmental Park, Cha-am, Phetchaburi, Thailand
To see the actual publication please follow the link above