Page 68

Proceedings of International Conference on Climate Change, Biodiversity and Ecosystem Services for the Sustainable Development Goals : Policy and Practice 27-29 June 2016 at the Sirindhorn International Environmental Park, Cha-am, Phetchaburi, Thailand

The  cluster  analysis  indicates  that  10  populations  of  Gloriosa  superba  formed  three  major  cluster   groups  (Fig.2) .   Cluster   I  represents  three  populations,  populations  1,  8  and  10.  Cluster  II  represents  population  2.  Cluster  III  represents  6  populations  (populations  3,  7,  5,  9,  4  and  6).  The  UPGMA  dendrogram  in  the  present  study  showed  that  some  populations  from  different  regions  were  located in  the  same  clusters  for  eg.  The  population  1  (Udaiyarpalaiyam)  and  the  population  10  (Kottayam)  were  grouped  together  despite  the  geographical  distance  of  236  km  between  them.  On  the  contrary  two  geographically  close populations,  those  of  Kozhikode  and  Yelagiri  Hills,  were  distributed  into  separate  clusters  and  showed  a  rather  large  genetic  distance. Fig.2  UPGMA  (based  on  Nei’s  genetic  distance)  dendrogram  showing  the  relationship  between  various  populations  of  Gloriosa  superba AMOVA  studies  show  that  most  of  genetic  variation  in  Gloriosa  superba  is  distributed  within  populations  rather  than  between  them,  indicating  restricted  populations. Table  5  Analysis  of  molecular  variance  (AMOVA)  for  various  populations  of  Gloriosa  superba  from  the  study  area  employing  RAPD  markers IV.  DISCUSSION An AMOVA  analysis  (Table  5)  and  PCA  (based  on  morphological  characters)  also  did  not  show any  regional  assemblage  among  the  populations. Genetic  relationships  among  various  populations  of  Gloriosa  superba The  proportion  of  RAPD  loci  polymorphic  per  population  ranged  from  57.84%  (Yelagiri  Hills)  to  74.59%  (Kottayam).  Amova  analysis  reveals  that  95.9%  of  the  total molecular  variation  is  due  to  genetic  difference  within  populations  and  only  4.1%  is  due  to  genetic  difference  among  populations  (Table  5).  RAPD  result  based  on  There  is  much  environmental  influence accounting  for  the  horticultural  variability  observed.  Therefore,  when  compared  with  RAPD  techniques,  horticultural  traits  are  relatively  less  reliable  and  inefficient  for  precise  discrimination  of  closely  related  genotypes  and  analysis  of  their  genetic  similarities.  In  particular,  knowledge  of  population  genetic  structure  provides  a  historical  perspective  of  evolutionary  changes  that  characterize  a  species  and  allow  us  to  predict  how  populations  will  respond  to  future  events  of  natural  and  artificial  origin  17.  Under  the  climate  change  scenario,  for  management  and  protection  programs,  the  genetic  structure  of  species  at  population  level  has  received  special  attention  in  the  past  few  years  18.  The  presence  of  unique  genetic  characteristics  distinguishes  members  of  a  given  population  from  those  of  any  other.  High  diversity  is  an  indicator  of  better  adaptability  of  a  population. Irrespective  of  the  plant  parts  used,  66 Proceedings  of  the  International  Conference  on  Climate  Change,  Biodiversity  and  Ecosystem  Services  for  the Sustainable  Development  Goals  (SDGs):  Policy  and  Practice  27-29  June  2016,  Cha-am,  Phetchaburi,  Thailand


Proceedings of International Conference on Climate Change, Biodiversity and Ecosystem Services for the Sustainable Development Goals : Policy and Practice 27-29 June 2016 at the Sirindhorn International Environmental Park, Cha-am, Phetchaburi, Thailand
To see the actual publication please follow the link above